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ABSTRACT

The bounds of Birnbaum (1942), Gordon (1941) ,

Sampford (1953), and Tate (1953) for the upper tail area

of the normal distribution are , with some modifications,

• extended to the t-~~istribution . Comparisons between the

bounds are made and some numerical examples are provided .
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SIGNIFICANCE AND EXPLANATION

In order to use statistical tests it is necessary to

have numerical values for the frequency distributions involved.

These are usually obtained from published tables . For com-

puter work it is often preferable to use simple approximate

algebraic formulae rather than storing tables or doing

numerical integration . Such formulae are often convenient also

when using a hand calculator . Approximate formulae are

particularly useful when upper and lower bounds can be given ,

bracketing the exact value. These remarks apply particularly

to the “tails ” of frequency distributions.

Bounds are well known for the normal distribution.

This paper develops analogous bounds for the t-distributiori ,

which is used , for example , when comparing means derived from

two di f ferent  sets of experiments .

The responsibility for the wording and views expressed in this descr ip ti ve
summary lies with MRC , and not with the author of this report.
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Bounds for the t-Tail Area

Andrew P. Soms

• 1. Introduction

There are many approximations known to t-tail  areas (Johnson and Kotz

1970 , Chapter 27) .  Bounds , however , do not seem to have been considered ,

even though they sometimes are more desi rable. They are usefu l for bounding

the descriptive level of the t-test as well as theoretical considerations . For

the normal case bounds have been given in Johnson and Kotz (1970, Chapter 33).

The purpose of this paper is to extend, with some modifications, the results

of four papers on the normal distribution (Birnbaum 1942, Gordon 1941, Sampford

1953, and Tate 1953) to the t.

A brief review of the results for the normal distribution will provide

some motivation for the t. Let

~~(t)  = (2~)~~~
2 e t2/2 and 1 - ~(x) = ~(t)dt ,

where here and throughout it will be understood that x > 0. Then in the

normal case Mills ’ ratio R
~ 

is defined by R
~ 

= (1 - ~(x))/~(x), and is

used to obtain bounds because it has the well-known asymptotic expansion

= (-1)’ 1 3  •• •  (2i-l)/x2’~~, (1.1)

with the property that if the first n terms of (1.1) are summed , then the

error term (R
~
_sum of first n terms) has the same sign as the first neglected

term and is less than it in absolute value . For the t, let

fk(t) = ck(1 + t2/k) l )/ 2  Ck 
= 
r((k+1)/2) 

2
~(k/2)(~k)

k an integer > 1 , and

Sponsored by the United States Army under Contract No. DAAG29-75--C-
0024 and the flra~~iate school of th~ Tlniversitv of Wisconsin—Milwaukee .
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F
k

(x) = 1 - F~ (x) =

Here the correct definition of Mil ls ’ ratio is

= (Pk(x)/(( x2/k)fk(x)) = ~~(x)/g(x)

(for simplicity the subscript k on g is omitted), since it was

shown by Soms (1976) that R~ 
has the asymptotic expansion

• R = (—1)’ 
l•3 • • •  (2i—l)k 1 

2+ l (1.2)
X 

i—O (k+2)(k+4) .. .  (k+2i)x 1

with the same error property as for the normal, i.e., if (1.2) is summed to

n terms, then the error term has the same sign as the first neglected term

and is less than it in absolute value. In particular,
9

!(~ - 
k 

2~ 
< R < ~~

- . (1. 3)
X (k#2)x X

It will be seen that in general these bounds can be improved.

2. Extension of Birnbaum ’s Bound

By int egration by parts ,

I t 2
~~~ fk (t )dt = ck I t 2

~ ~~~~~ - (1 + ~
2 ( )  

dt =

x2
~ (1 + 

~~~~~ 
fk() 

+ 2n i~r J t2~~
1 (1 + 

~~
_) f’k (t )dt , n <

(2.1)

and
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~2n f k (t )dt  = ~
2
~~

1 k d (1 + 
t
)~~

(k~ 1)/2 dt =

: k-i x2
~~

1 (1 + 
~~~~ 

+ (2n-l) 
~~~ 

~
2n
~
2 (1 + ~~ fk(t)dt , n <

(2.2)

Hence if k > 3, letting g(x) = (1 + x 2 Ik) f k (x) , n = 0 can be substituted in

(2.1) and n = 1 in (2.2) to give

tf k (t)dt = kg(x)/(k-l)

and

~~ 
t~~~~ t~~ t = kxg (x)/ (k - l )  + kI (k ~1)J (1 + t

2/k) f
k
(t)dt ,

or

( (k - 2 ) / (k -l ))  f: t 2f k (t)dt  = (k/ ( k - l) ) ( x g (x) + I fk (t)dt) ,

or

f t 2
~~~t)~ t = (k/ (k -2 ) ) (xg (x) + J fk

(t)dt).
x x

The Cauchy -Schwartz inequality

(f’ tfk(t)dt)2 < 

~ 
t~f~(t)dt i: 

fk(t)dt

gives

(kg(x)/(k-l))2 < (k/(k-2))(xg (x) + 
~~ ~~~~~~~~~ 

fk(t)dt),

or 

(k)(k-2) g2(x) < Cf f (t)dt + ~~~~~ ) ) - x
2g2(x)

(k-i) x 2 4

—3—
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(k)(k-2) 
+ 

X
)
’ 

- 
X 

< f~(t)dt/g(x) = Pk(x)/g(x) , 
(2.3)

which is the desired result.

Call the left—hand side of ( 2 . 3)  the BL-bound . The known bound

(the AL-bound) is

k 

~~~ 
(2.4)

(k+2)x

it is clear that near the origin the BL-bound is better (bigger is better for

lower bounds), while an examination of the limit of the ratio of the AL-bound

to the BL-bound as x -
~ ~ shows it to be bigger than one and hence the AL-bound

is better for large x.

3. Extension of Sampford’s Bounds

In the course of subsequent development, some results on the Ck will be

needed and they are collected here for easy reference. From Johnson and

Kot z (1969 , p. 6),

r (a+l) = (2 1T)~~’2 c~+ 1/2 e~~~
0a”2~ , 0 < 0~ < 1. (3.1)

Using (3.1), upper and lower bounds on C
k 
are now obtained . For the upper

bound, for k > 2,

• 

- 

r (~~ - +  1) ((k l)/2) (k-i)/ 2 + 1/2 e ’2 + l/6(k-1)
Ck 

- 

F(~~-~ + 1) (,Tk) 1/2 ((k-2)/2) 2
~~

2 + 1/2 e 2V2 (irk) 1/2

(3.2)

= 
k-i 

1 
( 1+ ~~~~~~~~ e 6

~~~~~ (k_ 1)e V6 (k_ i )  
. 

*

( k ( k — 2 ) )  /2 e”2 ( 2ir ) 1I2

—4—
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For the lower bound , for k > 2 ,

((k~ l )/ 2 )~~~ W2 ÷ 1/2 e ’2
C

k 
((k-2)/2) 

(k -2) /2  + 1/2 e~~
’
~
2
~
”2 + l/6(k-2) (irk)”2

- (k-1)(1 + l/ (k -2) )~~~
2
~

12
— 

(k (k-2 ) )~ ”2 (21T ) ”2 eh/’2 + 1/ 6(k-2)

Using (3.2) and (3.3) the following lemma is now proved .

Lemma 3.1: With Ck as above,

4ck
2 

< 1 or Ck 
< -

~~
- , k > 1, (3.4)

_2c
k
2 

+ (k+l)/2k > 0 or Ck < ( (k +l)/k) 1”2 /2 , k > 1, (3.5)

and

8ck
2 

> (k-i)/k or Ck > (l/ 2) 3”2 ( (k-l) /k) 1
~
”2 , k > 2. (3/,)

Proof of (3.4): It is verified directly that (3.4) holds for k=l , 2, and

3. For k > 4, note that both (k-l)/(k (k-2))~
”2 and e” 6 ’~ are bigger than

one and decreasing functions of k and hence it suffices to observe that the

last expression of (3.2) evaluated for k=4 is <

Proof of (3.5): Since ((k+l)/k)1”2 > 1, (3.5) follows immediately from

(3.4).

Proof of (3.6): It is verified directly that (3.6) is true for 2< k < 5.

For k > 6, using (3.3), it suffices to show that

(k-i) (l+l/(k-2)) 2
~
”2 

> 
(k-i)1”2

(k(k-2)) 2(2ir)1”2e~
’2 + i/6(k 2) 23”2k”2

or, since ((k-1)/(k-2))1”2 > 1, that

(i ÷ l / ( k - 2 ) ) ~~~
2
~~

2 
> ir 

2e’~
2 + l/6(k-2),2

which is true for k=6 and hence for k > 6 since the left-hand side is an

increasing function of k and the right-hand side decreasing .
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Let v(x) = h R .  Then

X (x) = v’(x) = ~(x)(~(x) - ~j~~x)/(1 + x2/k) (3.7)

and the first result is that 0 < X(x) < 1 for k > 1 (here and throughout, “

means the derivative). In the normal case, Birnbaum’s inequality is equivalent

to A(x) ( 1 - for the -t this is not so - in fact, it will be shown that X(x) < 1

gives a bound which is uniformly better than the BL-bound . Therefore, the method

of proof (the Cauchy-Schwartz inequality) used by Sampford and Birnbaum for the

normal case must be different for the t .  It is instructive to give a different

proof for the normal which generalizes to the t. For the normal case,

v ’(x) = X(x) = v(x)(v(x)-x) (recall that v(x) = (2ir)-112 e
2/2/(l~

J

X
(2iry1/2

e t / dt)). Suppose for some x, A (x) ~ 1. Then there exists an x such that

A (x) > 1 and A’ (x) = 0 since A (0) = (2/(2TrY~
”2)2 < 1 and from (1.1), for arbitrary

c and x sufficiently large, X(x) < 1 + c. Now A’(x) = X (x)(v (x)-x) +

v(x)(A(x)-1). But from (1.1) v(x) > x, and hence A’ (x) > 0, giving a contra-

diction. Returning to the t, we have

Theorem 3.1: Let A (x) be given by (3.7). Then 0 < A (x) < 1 for k > 1.

Proof: For convenience, A(x) and v(x) will be denoted by A and v. From

(1.3) v > x, and hence A > 0. Suppose A > 1 for some x. Then there exists an

x such that A > 1 and A’ = 0, since from (1.2) A = I and from (3.4)

A (0) = 4ck
2 

< 1. Now

A ’ = 

(1÷x 2/k) 2 (v -~~~ x ) (~-~~~ x) + 

1+:2,k [14
:2/k 

(v-~~~~x) -

= 
v (v- (k-l)x/k)(2v- (k+l)x/k) 

- 
k~~]

l+x2/k 1 + x2/k k

= A (2 - ~~~~~~~ 
- ~ (~~~)(A-l) > 0 ,

1+x /k J 1+x /k

I !
L .  H
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and hence A ’ > 0, a contradiction , giving the conclusion .

From Theorem 3.1,

v(v - (k-l)x/k) < 1 + x2/k. (3.8)

Completing the square in (3.8) gives

(v - (k-l)x/2k)2 < 1 + ((k+l)x/2k)2,

or since v - (k-l)x/2k > 0 from (1.2),

v < (k-l)x/2k + (1 + ((k+l)x/2k)2)1”2 ,

or

((k-l)x/2k + (l4( (k+ 1)x/2k) 2 ) 112 ]~~ < ~~(x)/g (x). 
(3.9)

• Call the left-hand side of (3.9) the SL-bound . Then the SL-bound is uniformly

better than the BL-bound . It suffices, using (2.3), to show that, for z = x/2,

* 

z + (1 + (~~~ z) 2)h/ 2  
< ( (~~ 1) 

+ 

(k(k -2)) 2 z
2)

h/2 
+

or

(1 + (1 + 
1) 2 z2) l/2 < + 

(k(k -2)) 2 z2 )
1/2 

+ 
1 

+ k(k -2)~~~

Squaring both sides and noting that the cross-product term on the right is

> 2z~/k gives the result. Consider now the SL-bound and the AL-bound . The

SL-bound will be better if

[i~~ x + (1 + ~~~~~ x) 2 ) 1~~~~~~> - 
k 

~ 
(3.10)

J 
X (k+2) x

Since (1 ÷ a2)V2 < a + l/2a, a > 0, (3.10) will hold if

k -l 1 k
• (x+ ) > — -  3~(k+l)x X (k+2)x

which is true if x < k1”2 . Noting that (1 + a2)”2 > a - l/2a for large a,

and repeating the above, shows that for large x the AL-bound is better .

1,_k
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To summarize, the SL-bound is better than the BL-bound for all positive x

and for x < Y~I~ better than the AL-bound , while for large x the AL-bound is

better.

Recall that

A ’ = 
v r(v- (k - l )x/k) (2v — ck +l) x/ k)  

- k-fl
l÷x2/k L i + x2j’~ 

kJ.

v 
- k _ i )  = 

(‘J- (k-1)x/k) (2v- (k+l)x/k) 
. (3.11)

l+ x / k  1 + x / k

The’-~ the second result which will give an upper bound is

Theorem 3.2: Let A’ and 4 be as in (3.11). Then, for k >2 , A ’ > 0 or ,

equivalently, ~ > (k-1)/k.

Proof: Suppose A’ < 0 for some x. Then there exists an x such tha t

< (k-l)/k and 4 ’  = 0, since ~~0) = 8c
k
2 

> (k.-1)/k by (3.6) and ~ (x) =

(k-l)/k, since v/x = 1 by (1.2). Now using (3.7),

- 
[(X-(k-l)/k) (2v- (k+l)x/k) + (V - (k-l)x/k)(2A- (k+1)/k)J(l÷x 2/k)-2(1+x2/k )x~ /k

- 

(1 + x2/k)2

(v- 2x/k)~ -((k-1)/k)(2V-(k+l)x /k) + (V- (k-1)x/k) (2A- (k+l)/k)
= 2 . (3.12)

(1 + x /k)

Suppose V < 2x/k . Then x < V < 2x/k , since V > x by (1.3), and so kx < 2x,

which is imposs ible since k > 2 , and so V > 2x/k. Adding and subtracting

(v-2x/k) (k-1)/k to the numerator of (3.12), gives, af ter some simple algebra ,

= [(v-2x/k) (~- (k-1)/k) + 2(v-(k-1)x/k)(A-l)]/(l+x
2
/k) < 0 , since

< (k-1)/k by assumption and A < 1 by Theorem 3.1, which is a contradiction

and completes the proof.

—8—
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From Theorem 3.2,

(v-(k-1)x/k) (2v- (k+ 1)x/k) > (k-l)(l+x
2/ k ) / k , (3.13)

and comple ting the square in (3 .13) gives
S

(v- (3k-1)x/4k)2 > (8(k-1)/k + ((k+l)x/k)2)/16, (3.14)

and since V > (3k-l)x/4k, (3.14) gives, af ter some algebra ,

4/ [(3k~ 1)x/ k + (8(k-l)/k + ((k+l)x/k)2)
1
~~ > 

~~(x)/g (x). (3.15)

= Call the left-hand side of (3.15) the SU-bound and l/x, the bound obt..’ned

from (1.3), the AU-bound . Then inspection shows that the Sli-bound is always

better (smaller) than the AU-bound .

4. Analogues of Tate’s Bounds

The upper and lower bounds der ived here are suitable , unl ike the others

in this paper, for x clos e to 0 - in particular they will be seen to hav e

the right limiting behavior as x -* 0. For simplicity the subscripts of

and F
k 

will be omitted in this section . Then the first result is

Theorem 4.1: Let h = F(l_F)_f2/4ck
2
, k > 1. Then h > 0.

Proof: Let c = l/4ck
2. Now h’ = f(l - 2F) + 2c(k+l)xf2/ ( k ( 1  + x2/k)),

since f’ = - (k+1)xf/ (k(l + x
2
/k)), and hence h ’ (O) = 0. Also

h’ = -2f 2 
+ ~~~~ 

[_fx(l~ 2F) + 
2c 

(2f
2
x
2 (- ~j -~-) + f2(l -

• k(1+x /k) l+x /k

= -2f
2 

+ 
k+l 
[xh’ + 

2cf
2 

((-1 - ~)x
2 

+ 1)1 , (4.1)
k(1+x /k) L l+x /k J

• and so h”(O) = 
~
2c
k
2 

+ 2cc
k
2
(k+ 1)/k = 

~
2c
k
2 

+ (k+1)/2k > 0 by (3.5). There-

fore h ’ > 0 near the orig in and since h(0)  = 0 and h(x) = 0, h(x) must

have a (possibly relative) maximum ahead of any (possibl y relative) minima .

—9—
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• Recall that for a maximum, h” < 0, and for a minimum , h” > 0. Suppose

• that x is an extremum of h. Then h’(x) = 0 and hence using (4.1),

= 
2f2 

2 [~(1+X
2Jk)2 - c !~j-~_ (1 + ~)x

2 
+ c

(l+x /k) L k k j

= 
2f2 

[l ÷ c ~~~~ ~~~~~~~~~~~~~~~~~~~ (4.2)
(1÷x /k) k k2J

If x is a minimum, then

-l + c(k+1)/k > (2/k + c(k+1)(l+2/k)/k)x 2 4 x~!k
2, (4.3)

while if x is a maximum , the inequality (4.3) is reversed. Therefore if h

has any minima, the minima must precede any maxima, which is a contradiction,

• hence h has no minimum, and this proves the result.

So

F(l-F) > cf~,

or

+ l) V2!2g(x) < F~~~~~’g( X) .  (4.4)

Call the left-hand side of (4.4) the TL-bound . For x close to the origin the

TL-bound is the best since it gives the correct limiting value of 1/2. For

large x all the other lower bounds given are better than the TL-bound . This

is shown by considering the limiting value of the ratio of the bounds as x —~ ~~~ .

The next theorem will be used to obtain an upper bound on ~~(x)/g(x).

Theorem 4.2: Let g = (2F-1)(l+x 2/k)f - (k-1)F(1-F)x/k , k > 2. Then

g > 0. 
•

Proof: g’ = 2f2(l+x 2/k) - (k-1)F(1-F)/k (4.5) H

and

—10—
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2g” = -4(k+1)f x/k + 4xf /k + ( k- l ) ( 2 F -1) f/ k

= -4f2x + (k-.-l)(2F-1)f/k. (4.6)

Note that g(0) = 0 and g(x) = 0. Hence if there is an x such that

g(x) < 0, then there exists an x such that g(x) has a minimum at

• 
v for which g(x) < 0, g’ (x) = 0, and g”(x) > 0. Now at using the definition

of g, (4.5), and (4.6), g” may be written as

g” = -4f2x + 
k-i (g+ (k-1)F(l-F)x/k)
k (l+x 2/k)

~ -4f~x + (
k_ l

) 2 F(1-F)x
k (l+x 2/k)

= —4f2x + !~! 
2xf2(1+x 2/k) <

k (l+x 2/k)

which is a contradiction . Hence g > 0.

Completing the square in g > 0 gives

(F + k(1+x2/k)f/(x(k~1))~l!2)
2 > [k(1+x 2/k)f/(x(k-1))}2 +

or, after taking square roots and some algebra,

(1/2 + k(l+x2/k)f/(x(k-1)) - ( 1 /4  + [k ( l +x
2/k)f/(x(k-1))]

2
)1”2)/ g (x) > ~(x)/g~x).

• (4.9)

Call the left-hand side of (4.9) the TV-bound . As for the TL-bound , near the

origin the TV-bound is best since it gives the correct limiting value and for

large x all the other upper bounds given here are better.

5. Analogues of Gordon’s Bounds

Here R
~ 

and its derivatives are considered . Let k > 2, and recall that ,

dropping the subscript x ,

R = ~~(x)/g(x) = 

~~~~~~~~~~~~~~~~~~~
Then

= ((k-1)xR/k-l)/(1+x 2/k), (5.1)

—11—
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and the first conclusion is that R’ < 0, or (k-1)xR/k < 1 , or ~/g < (k/ (k-l))(1/x) ,

and this is true since the AU-bound is 1/x and therefore uniformly better . This

bound has been derived differently by Pinkham and Wilk (1963). It is instructive

to give a direct proof since this leads naturally to the second result. Note

that (k-l)xR/k < 1 at x=0 and (k-1)xR!k = (k-l)/k. Hence if (k-1)xR/k > 1 ,

then there exists an x for which (k—l )xR/k > 1 and (k-1)xR/k =

(k-l)R/k + (k-1)((k-i)xR/k-1)/(k(1+x 2/k)) = 0, but this is a contradic tion since

(k-l)xR/k-l > 0 and (k-1)R/k > 0, giving the conclusion . Call (k/(k-l))(1/x)

the GU-bound for future reference. The next result will give a lower bound on

F~(/g

Theorem 5.1: R” > 0 for k > 3.

Proof: Using (5.1), R” = 
((k-1)Ik) (( 2) /k+1)R - (k-3)~L~ , and hence

(l+x ,‘k)

R” > 0 is equivalent to h(x) R - > 0. Note that h(0) > 0 and
1+(k-2)x /k

u r n  h(x) = 2 / ( (k -1 ) ( k -2 ) )  > 0. So if h(x) < 0 for some x then there ex ists S

an x such that h(x) < 0 and h’ (x) = 0. Differentiating ,

h’(x) = 
(k-l)xR/k-1 

- 
k-3  (1 - (k-2)x2/k) 

, (5.2)
1+x /k - (1 + (k-2)x 1k)

and adding and subtracting (k-1)x ( (k -3)x !(k -1) ) and some algebra gives
(l+x /k)k 1+ (k-2)x /k

h ’(x )  = 
(k-l)x 

(R - 
(k-3)x/(k-l) )~ 

((l+x 2/k)(1+(k-2)x
2/k) 2Y’

(l+x /k)k 1+(k-2)x /k

f k-2 2 k-2 k-3 ~ ~ 
‘ 
2 k-2 k-3 

+ 
(k-2) (k-3) k-3 \ 2

+ (r.)(~~-i.))
x + k + 

k k ( k - l )  - 
k(k_ 1)) 

X

k-3
+ (-1 - 

~
-i-
~ 

< 0, (5.3)

l2
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since the f i rs t term on the right-hand side of (5.3) is < 0 by assumption and

the second negative since inspection shows every coefficient to be

negative . This is a contradiction and concludes the proof.

R” > 0 gives

(k-3)x/ (k- i) 
<

l+(k-2)x /k g

Call the left-hand side of (5.4) the CL-bound and assume that k > 4, since

for k = 3 (5.4) is trivially true. Comparison to the AL-bound shows that up

to an x the CL-bound is better and then the AL-bound is better. Consider now

the comparison to the SL-bound . The SL-bound is better for all x for which

+ !~j~ x2)> ~~~ x(~j~ x + (1 + (~~~~~)2)1/2)• (5.5)

After some algebra, (5.5) is equivalent to

(1 + (k-l)x2/2k)2 > ((k-3)x/(k-l))2(1 + ((k+1)x/2Jc )2) (5.6)

and comparing the coefficients ofx2 and x4 on both sides, (5.6) is seen to be

true for all positive x. Hence the SL-bound is better than the CL-bound .

6. Numerical Comparisons

In Table 1, the bounds obtained in this paper are given for some selected

k and x. A ‘s - ” indicates that the bound is negative.

1. Lover and Upper Bounds for

Degrees of fre edom
6 10 20

Bounds

.5 1.5 3.0 .5 1.5 3.0 • .5 1.5 3.0

8L .761 .484 • .292 .775 .495 .299 .17 9  .499 .302

(AL ,AU) (—.2.000) (.444 ,.667) (.306 ..333) (—,2.000) (.420,.667) (.302 ..333) C— .2.000) (.397 ,.667) (.300 ,.333)

(GL ,CU) (.257 ,2. 400) (.360 ..800) (.257 ..400) (.324 .2.222 )  (.417 ..74 1) (.285 ..3 70) (.365 .2.105 ) (. 444 , . 702) (.295 ..3S1)

(SL ,SU) (.800 . .984) (.512 ,.S43) (.306 ..311) (.792 . .955) (.S07 ,.533) (.305 ..309) (.787 , .934) (.504 ..526) (.304 ..307)

(TLjU) (.725 .1.044) (.160 ..6ft) (.0106 ,.394) (.736 , 1.012) (.177 ,. 656) ~ 00991 ..367)(.744, .989) (.191 ,.632) (.00185 . 349)

— 13—
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It can be seen that for the cases considered the SL-bound is the best among

• the lower bounds and the SU-bound the best among the upper. It is thus of

• interest what kind of approximations can be obtained to Fk(x) using the

S-bounds multiplied by g(x) as the approximation . This is done in Table 2

for selected degrees of freedom and known t percentile (Cramer, 1946, p. 560).

Here L = (SL-bound )~g(x) and U = (SU-bound)’g(x).

2. S-Approximations to

Degrees of Freedom

• Fk (x) 6 20 120

x L U x L U x L U

.1 1.440 .0956 .102 1.325 .0959 .101 1.289 .0959 .101

.05 1.943 .0487 .0505 1.725 .0486 .0503 1.658 .0487 .0502

.025 2 .447 .0246 .0252 2.086 .0245 .0251 1.980 .0245 .0251

• .010 3.143 .00989 .0100 2.528 .00988 .0100 2.358 .00988 .0100

• .005 3.707 .00496 .00502 2.845 .00496 .00501 2.617 .00496 .00501

.0005 5.959 .000498 .000500 3.850 .000497 .000500 3.373 .000498 .000501

From Table 2 it appears that the approximation using the SU-bound ~~ves

good results if F
k
(x) is less than or equal to .1.

—14—
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